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The flow induced by a disk oscillating 
in its own plane 

By D. J .  BENNEY 
Ikpartment of' Mathematics, Massachusetts Institute of Technology, 

Cambridge, Mass. 

(R,eceivcd 9 September 1963) 

The flow field due to the oscillatioiis of a disk is governed largely by diffusion 
near the boundary, but the inertia forces cannot be neglected a t  large distances. 
The solution is obtained as a single expansion for the case when the disk is per- 
forming small-amplitude sinusoidal oscillations. 

1. Introduction 
When a body immersed in a fluid of density p and kinematic viscosity v per- 

forms small-amplitude tangential oscillations of frequency w it is well known that 
the motion is confined to a Stokes boundary layer of thickness O(v/w)*. If, how- 
ever, there is a gradient of centrifugal forces parallel to the boundary it is clear that 
some steady circulatory motion will be set up in the far field. This motion will be 
controlled by the viscous-inertia force balance. Thus the first-order motion will 
be of a different type near to and far away from the body. Problems of this 
nature can be investigated by finding inner and outer solutions and then using 
some kind of matching process. I n  the case of the oscillating disk this type 
of analysis was done by Rosenblat (1959). An investigation of the problem 
with special reference to the behaviour of liquid helium has been made by 
Gribben (1961). The flow outside bodies of revolution oscillating a t  small 
amplitude has been treated by Restin & Persen (1954), and the second-order 
motions were calculated by Carrier & Di Prima (1956) for the case of a spherical 
body. 

In  this paper the discussion will be limited to the configuration considered by 
Rosenblat. However, the techniques involved in the solution are quite different, 
and it is believed that a clearer picture of the physics results. Further there 
appears to be no difficulty in extending the method to  obtain the higher approxi- 
mations and indeed to other geometries. Our primary purpose is to find a single 
series representation valid over the entire flow field; namely near the disk where 
the flow must be nearly of the Stokes boundary-layer type, and a t  infinity where 
one would anticipate a uniform inflow due to centrifugal action. 

2. Equations 
The disk is supposed to be of infinite radius and coincident with the plane 

z = 0. The fluid is taken to be homogeneous and incompressible and to lie in the 
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region z > 0. Taking cylindrical co-ordinates ( r ,  8, z )  and the corresponding 
velocity components as (u, v, w), the equations governing the motion are 

V 1 
Z U ~  + UW, + - ~ I l g  + WW, = - -p, + lJAtt1, 

r in 
with the boundary conditions 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

u = w = 0, v = Qr(eiwt+e-i“l), a t  z = 0; ( 2 . 5 )  

u,v+O as z-too. (2.6) 

The motion is assumed to be independent of H and so we may introduce a stream 
function (see Goldstein 1938) and write 

u = r-l@z, v = ?.-I$, ui = -r- l@ r’ ( 2 . 7 )  

The two relevant equations are 

where 

By virtue of the boundary conditions we assume that 

$ = r2G(z, t ) ,  $ = r2F(z, t ) ,  

and after one integration of equation (2.S) obtain 

vFZ3,- Fd = - G2 + Fg - ZFF,, 
ttGZZ - Gt = 2 ( 4 G -  FG,). 

On introducing dimensionless variables (denoted by primes) 

(2.8) 

(2.9) 

(2.10) ‘ 

(2.11) 

(2.12) 

(2.13) 

z = ( ~ ~ I / w ) * . z ’ ,  t = ( l / ~ ) t ’ ,  F = Q ( Z V / W ) ~ F ’ ,  G = QG’, (2.14) 

the problem reduces to that of solving 

subject to the boundary conditions, 

F(0,  t )  = Fs(O,t) = 0, G ( 0 , t )  = eil+e-i[; 

Fz(w,  t )  = G(m, t )  = 0, 

(2.17) 

(9.18) 
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where e = Q/w and the primes are now omitted. These are the equations con- 
sidered by Rosenblat. 

In  this paper we are interested in the case e small and positive; that is when the 
thickness of the Stokes layer (21~/w)4 is very much less than that of the Ekman 
layer @v/Q)&. If we considered the case 6 9 1 it would be natural to use the 
Ekman layer as the length scale and the equations would reduce to 

1 
+$zz - - Fzt = - G2 + FE - 3Fl$,,, (2.19) 

(2.30) 

e 
1 

tG,,--Gt = 2(FaG-FG,). 
€ 

With 6-l = 0 these are the equations for the steadily rot,ating disk of von KBr- 
r n h  (1921). 

3. Method of solution 
Consider now the equations (2.15), (2.16) with the boundary conditions 

(2.17), (2.18) and c small and positive. As has been mentioned earlier the basic 
difficulty with a straightforward Taylor expansion of F and G in powers of t: 

is that the far field involves a non-linear balance in the equations, and so such 
series can only represent the true solution within the Stokes layer. This difficulty 
soon becomes apparent in the analysis of the higher perturbations where powers 
of z arise in the solution. In  anticipation of these complications i t  is convenient 
to introduce two length scales into the problem a t  the outset, and to solve for the 
velocity components considered as functions of three independent variables 
2 ,  t ,  and ( = €2. The (-dependence will be chosen to suppress any difficulties in 
the perturbation procedure. This idea appears to originate from the work of 
Mahony (1961) and has been used by Kevorkian (1961) in problems involving 
non-linear oscillations. This device is artificial; but, a t  least for the present prob- 
lem, is most convenient. 

Introducing 6 = EZ as an additional independent variable, the problem is to 
find F(z ,  6, t )  and G(x, 6,  t )  where 

+&, - I$ = C [  - $q2t + FCt- G2 + FZ - 2FCz] + €:”[ - $cg + 2E’,FC - 4F&c] 

+c3[ - BFgt+ F i  - 2FFc,], (3.1) 
IG zz - G -  1 - &[ - G,, + 2& G - 2FG.J + e2[ - BGtg + 2FtG - 2FGt], 

F(O,O,t) = ~(O,O,t)+eFC(O,O,t)  = 0, c;l(O,O,t) = eit+e-“; 

F,(co, CO, t )  + €F&co, CO. t )  = G(co, 00, t )  = 0. 
co 

We a- bsume F = 3 @F(”)(z, 6, t ) ,  
n = o  
m 

G = 3 cnG(n)(Z,(,t). 
n=O 

For the zeroth-order approximation we have 
LF(0) - F(0) = 0 
2 zzz zt 

lG(O)-G(O) = 0. 
2 zz 1 

(3.2) 

(3.3) 
(3.1) 

(3 .5 )  

(3.6) 

( 3 . 7 )  

(3 .8)  
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388 I). J .  Benney 

I n  anticipation of bhe expected inflow a t  infinity and the boundary conditions 

(3.9) 
on G we take 

F(0) = fp (2, (), 
G(0) = gio)(z,  () eil + g\O)*(=, <) e-il, 

fp = ah;) + a$ z + a g  22, 

(3.10) 

(3.11) 

(3.12) 

where 

g(o) 1 
= b(0) 11 e-(l+nc + b'O) 12 e(l+i)2* 

The a::) and b$) are as yet arbitrary functions of 6. I n  order to have a uniformly 
valid expansion we must insist on the dominance of the nth-order terms over the 
(n + 1)st order terms. Thus certain particular integrals must be avoided by choos- 
ing an appropriate ( depencence for the solutions. For the moment we leave aside 
any question of boundary conditions. 

The equations for the first approximation are 

- i p )  2 523 - JW z1 = - apw 2 z.5 + p o )  f t  - ,3012 + p p  I 2 - 2p(o)pi!), I- 

F(1) = fo(l)(z, () +fJl)(z, 6) e2il+ fJl)*(x, () e-zil, 

(3.13) 

(3.15) 

z 1@1)-G:1) zz = _G~~)+2(p~O)G(O)-F(O)G!O)),  (3.14) 

and so 
G(l) = qi')(z, () eit + &)*(z, 6) e-('. (3.16) 

Clearly positive exponentials must be absent else these would propagate into 
the higher approximations with larger exponents. Thus, for example, 

bii) = 0. 
For 9") we have 

(3.17) 

&g$:L - iqll) = e-(l+i)" [( 1 + i) (b\O,)' + 2(a&:) + ah;) z + a&\) 22) bit),,) 
+ 2{abt) + 2a& z }  blo,)]. (3.1 8) 

Any term of the form zne-(l+i)" (n 3 0) on the right-hand side of equation (3.18) 
gives rise to a term of the form zn+l e-(l+i)" in 91') and so would be inadmissible. 

a&:) = (0) - 0 (3.19) Therefore we insist that 
a02 - 7 

(3.20) bi:)' + 2ah;) b!!) = 0, 

where the primes denote differentiations with respect to (. 
Similar considerations apply to the equations for fd l )  and fjl), 

Y (3.21) .- f (12- = - 2b'O'b(O)* e-2" 

if&- 2ifi i j  = - b(O)Ze-Z(l+i)Z. 11 (3.22) 
" 02-" 11 11 

The most general admissible solutions are 
f$" = a(l) 00 + z  lb(O)b(O)* 11 11 e-22 3 (3.23) 

f$1) = a&) +a&;) e-d2(1+i)~ - 1 ( 1 + i) 2 e-2(l-ti)z (3.24) 

qy)  = bl;) e-(l+i)o. (3.25) 

The continuation of this process presents only algebraic difficulties. For the pre- 
sent purpose we shall content ourselves with finding the uniform expansion 
correct to the first order. This involves a determination of the functions a&)((), 
@([), a&((), a&)((), a$;)((), bi;)(() and necessitates considering equations up to 
the fourth order. 
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For F@) and G@) we have 

I.F(z) - F(2) = - +FL:i + Fit) - 2GC0) Q(1) + 2F:O) F!1) - 2F(O)F(1) - 2;F(UFi!) 
'2 f S 3  f /  23 __ 

- _  3F(o) + 2F!0)F(o)-4F(0)F~~),  (3.26) 
2 355 I E 

k@:) - Q i 2 )  = - GL:) + 2p!O) @1) + 2Fi1) G(0) - 2F(O)GL1) - 2F(l)G!O) 
' 5  i- I 

1G"J) + 2F(O)@O)- 2F(O)@O), (3.27) 
- 2  5f 5 5 

and so F(2) = fJ2)(z, 6 )  +f$Z)(z, 6 )  e2it +fJ2)*(z, 5) e-zil, (3.28) 

G@) = &-)(z, ~ ) e i l + g ( 1 2 ) * ( z , ~ ) e - ' t + g ~ 2 ) ( = . , ~ ) e 3 " + $ 3 2 ) * ( z , ~ ) e - 3 i ~ .  (3.29) 

In the equation for giz) -we must have the coefficient of e-(l+i)z on the right-hand 
side as zero. This yields the equation 

b p ' +  g,cw,p oo 11 + 2a(i)b(o) oo 11 + ( 1 - i) ~b0,)~b:t)  + +( 1 - i )  ab0,)'bit) = 0. (3.30) 

The equations for f d 2 )  and ghZ) present no difficulties; but for fA2) we require 

aik)' = 0, (3.31) 

a$\)' + 2a&0,) a&) = 0. (3.32) 

At each stage the 6 dependence becomes determined to a certain order. To 
obtain the solution correct to the first order it suffices to consider the equations 
for fJ3) and fJ4) in F(3) and F(4) to close the system. These require 

.&g)"' - 9 YaOO ( O P  + 4a(o)a(o)" 00 00 = 0 (3.33) 

a&;)"' + 4a$)a&&)" - 4,(0Yal;)' 00 + 4ab0,)"a#,) = 0. (3.34) 

The boundary conditions can be found using equations (3.3) and (3.4). We find 
the following sequence of problems for al:), b:.:); 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 
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4. Concluding remarks 
The equations (3.35)-(3.40) are a set of ordinary differential equations capable 

of being solved numerically or by approximate methods. Clearly a$,) and ah:)’ 
will tend exponentially to certain constants as 5 .+ 00. The function a$) is constant 
everywhere and b:!), a$) and 6;;) will decay exponentially to zero in 6. These latter 
three functions of 5 multiply functions which are also decaying in z. Also as 
a&? is constant the time-dependent part of the motion which is dominant a t  
infinity is an oscillatory suction velocity having twice the frequency of the 
forced motion. 

\ 

1 2 
FIGURE 1 .  Graphs of j ( < ) ,  f’(5). 

The dimensional mean velocities (denoted by u,, and zu,J are 

u,, = eQtr(abo,)’- biO,’biO,,* e-23 + O(E) ) ,  

20, = - 2n(2v/w): (a:;)+ O(s)).  

3 

It is of interest to determine a$,)(00), the mean inflow velocity, and to note that 
the mean radial flow peaks a t  the outer edge of the Stokes layer, its magnitude 
being independent of viscosity. 

The usual approximate methods are available for dealing with the above set 
of equations. We take one simple iterative process for finding a$ (which we now 
denote by f for convenience) which compares favourably with an exact numerical 
integration. This iteration is 

f:+1= 2f?f:L2-4fnfn, (4.3) 

with f , ,  = (1 - e-”)/h. (4.4) 

Successive values of h are to be determined to make the iterates satisfy the 
boundary conditions. We find that 

We find fl(co) = 0*573,f;’(O) = - 1.60; and a further iteration gives f 2 ( c o )  = 0.547, 
fl(0) = - 1-64. These results show reasonable agreement with the solution ob- 
tained by a direct numerical integration, f(a) = 0*530, f” (O)  = - 1.66. Figure 1 
shows the graphs of f ( 5 )  andf’fc). 
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Finally, the shear stress r at the plate is found to be identical to that given by 
Rosenblat, namely 

T = 2 S l p i ~ ( w / 2 v ) ~  r [ (  - 1 + 0.761~2) cos 3wt + (1 - 1 . 0 4 6 ~ ~ )  sin wt 

+ 0.041e2(cos 3wt - sin 3wt) + . . .]. (4.7) 

This work w7as partially supported by the Office of Naval Research. 
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